Multiple Objective Optimization Genetic Algorithms For Path Planning In Autonomous Mobile Robots

نویسندگان

  • O. Castilho
  • L. Trujilo
چکیده

This paper describes the use of a Genetic Algorithm (GA) for the problem of Offline Point-to-Point Autonomous Mobile Robot Path Planning. The problem consist of generating “valid” paths or trajectories, for an Holonomic Robot to use to move from a starting position to a destination across a flat map of a terrain, represented by a two dimensional grid, with obstacles and dangerous ground that the Robot must evade. This means that the GA optimizes possible paths based on two criteria: length and difficulty. First, we decided to use a conventional GA to evaluate its ability to solve this problem (using only one criteria for optimization). Due to the fact that we also wanted to optimize paths under two criteria or objectives, then we extended the conventional GA to implement the ideas of Pareto optimality, making it a Multi Objective Genetic Algorithm (MOGA). We describe useful performance measures and simulation results of the conventional GA and of the MOGA that show that both types of Genetic Algorithms are effective tools for solving the point-to-point path planning problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance

Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...

متن کامل

Effective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot

  Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...

متن کامل

The State of Art on Navigational Algorithm for Path Optimization of a Mobile Robot

Mobile robots are vital for automation industries, surveillance and mapping, hazardous operation like nuclear plants, landmine detection etc. The path of such robots is controlled by a navigational algorithm. Several algorithm have been proposed and tried out for navigation of an autonomous mobile robot (AMR) around the globe .Some of these determine the path which is feasible to reach the dest...

متن کامل

Genetic Algorithms for Adaptive Planning of Path and Trajectory of a Mobile Robot in 2D Terrains

This paper proposes genetic algorithms (GAs) for path planning and trajectory planning of an autonomous mobile robot. Our GA-based approach has an advantage of adaptivity such that the GAs work even if an environment is time-varying or unknown. Therefore, it is suitable for both off-line and on-line motion planning. We first presents a GA for path planning in a 2D terrain. Simulation results on...

متن کامل

Optimal path generation for a simulated autonomous mobile robot

The paper deals with a set of algorithms including path planning, trajectory planning, and path tracking for a tricycle type wheeled mobile robot. Path planning is carried out with parametric polynomial interpolation using an optimization algorithm based on robot geometric constraints. Trajec-tory characteristics are then derived from the planned geometric path with time varying parameters. A s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Comput. Syst. Signal

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2005